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Abstract
The thermodynamics for systems of non-interacting bosons with multifractal
energy spectrum is considered. The critical attractors of one-dimensional
generalized logistic and circular maps are used to generate multifractal bounded
spectra with well defined scaling exponents. The specific heat is then calculated
for both cases of conserved and non-conserved particle number, showing a
power-law behaviour which is modulated by log-periodic oscillations when the
energy spectrum is not dense. The occurrence of Bose–Einstein condensation
for systems with conserved particle number, at which the specific heat is
discontinuous, is also analyzed.

1. Introduction

The existence of quasicrystals was first inferred from the experimental observation of sharp
diffraction patterns with a symmetry forbidden in periodic lattices [1],producing a great interest
in the understanding of the properties of these system. They lack translational symmetry
but, unlike disordered lattices, display long-range order. Besides, their optical patterns are
consistent with aperiodic geometry, having properties that are intermediate between periodic
structures (Bloch systems) and random materials, in spite of the purely deterministic rules used
to generate them [2, 3].

It is well known that the term quasicrystal is more appropriate for natural compounds
or artificial alloys, although in one dimension there is no difference between this and the
quasiperiodic structure formed by the incommensurate arrangement of periodic unit cells (for
a review see [4]). An appealing motivation, and perhaps the most characteristic one, for
studying such structures is that they exhibit a highly fragmented energy spectrum displaying a
self-similar pattern. Indeed, from a strictly mathematical perspective, it has been proven that
their spectra are Cantor sets in the thermodynamic limit [5–7]. These spectra, however, tend
to be very complex, and simplified fractal models have been used to explain their properties.
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Simplified fractals based on the Cantor set and Fibonacci sequence [8–11], as well as the
critical attractor of the logistic and circular maps at the onset of chaos [12–14], have been
used recently to model the energy spectrum of quasiperiodic systems. The thermodynamic
behaviour derived from such self-similar spectra displays some anomalous features, the
most prominent one being related to the emergence of log-periodic oscillations in the low-
temperature behaviour of the specific heat. The origin of these oscillations can be directly
identified as the longest wavelength oscillations on the integrated density of states (IDOS)
when it is expressed in terms of the logarithm of the energy. Furthermore, a series of recent
works looking for connections with the quasiperiodic aspects of these spectra (scaling laws,
fractal dimension, etc) as well as for some kind of common behaviour in the specific heat
spectra has shown, among other things, that the low-temperature log-periodicity of the specific
heat is intimately connected with some underlying fractal dimension characterizing the energy
spectrum [15–17]. Log-periodic oscillations have been observed to appear in general natural
systems with some underlying discrete scale invariance [18, 19].

In this work, we intend to extend the study of the thermodynamic properties of systems
with multifractal energy spectra, by considering that the quasi-particles obey the Bose–
Einstein quantum statistics. Both cases of conserved and non-conserved particle number
will be treated. Systems with conserved number of particles, for example gases of massive
particles, have a non-null chemical potential. Therefore, the particles may condense in the
ground state at low temperatures through a Bose–Einstein transition, for example the normal
to superconductor transition which occurs due to the condensation of Cooper pairs. The
proximity effect of a superconductor to a normal system with fractal spectrum has been
recently investigated [20]. We will also study the case of non-conserved particle number which
describes the thermodynamic associated with collective excitations. However, we will restrict
our study to bounded energy spectra, which is more likely to represent phonon energy spectra.
Although the spectra of quasicrystalline materials are generally used to account for electronic
properties, the phonon spectra have also been studied [21–24]. Scattering processes involving
phonons are fundamental to understand some features of the low-temperature thermal [25]
as well as electrical [26] conductivity of quasicrystals. In what follows, the energy spectra
are derived from the critical attractors of the families of logistic and circular maps which,
at the onset of chaos, exhibit a multifractal structure with long-range temporal and spatial
correlations. We are particularly interested in identify the relationship between the scaling
exponents characterizing the multifractal energy spectra and the resulting thermodynamic
behaviour. Our purpose is twofold: on the one hand, we will show that the emergence of
the log-periodic oscillations of the specific heat is directly connected with both the fractal
dimension of the energy scale support and the singularity strength associated with one member
of the extremal set of the multifractal attractor. On the other hand, we discuss the occurrence
of a Bose–Einstein condensation linked to the scaling behaviour of the energy spectrum.

This paper is structured as follows: we present in section 2 our theoretical model to
generate the multifractal energy spectrum for both the logistic and the circular maps. Then we
proceed to show in section 3 the specific heat profile associated with their energy spectrum.
Special attention is devoted to the Bose–Einstein condensation which depends on the integrated
density of states scaling at the bottom of the band. Finally, the conclusions of this work are
presented in section 4.

2. Energy spectrum

Logistic-like maps represent a class of simple dynamical systems where the production of
chaos can be observed. In their generalized form, this family is represented by
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Figure 1. Integrated density of states (IDOS) as a function of energy ε for the logistic-like map at
the onset of chaos defined by equation (1), considering the exponent φ = 2.0.

xi+1 = 1 − a|xi |φ, (1)

where the exponent φ is the inflexion of the map in the neighbourhood of the extremal
point x̄ = 0. This family of maps displays topological properties which are not dependent
on the exponent φ. Although metrical properties, such as the support fractal dimension
and Feigenbaum’s exponents, depend on φ, the attractors exhibit cascades of bifurcations
converging at a critical point ac(φ) for all values of φ > 1.

Another example of dynamical systems where chaotic orbits can be observed is composed
of the family of circular-like maps defined as

θi+1 = � + [θi − (K/2π) sin(2πθi)]φ/3, (2)

with 0 < � < 1 and 0 < K < ∞. For K = 1 these maps present critical orbits for which the
renormalized winding number ω = limt→0(θt+1 − θt) is equal to the Fibonacci golden mean
τ = (1 +

√
5)/2 [27].

These two families of maps exhibit a transition to chaos via quasiperiodicity. However,
they have distinct scaling behaviours for the same value of φ,belonging to different universality
classes. At the critical point, the dynamical attractor can be characterized by a multifractal
measure [28]. The multifractal behaviour can be described by the spectrum of the scaling
indices f (α) which expresses the dimensions of each subset with singularity strength α. The
continuous function f (α) has a parabolic-like shape within the range [αmin, αmax], where the
maximum value f (α0) is the support’s fractal dimension df . The singularity strengths αmin and
αmax are associated, respectively, with the regions where the measure is most concentrated and
most rarefied. Both the circular-like maps and the logistic-like maps have been extensively
studied and their attractor properties at the critical point are well known for distinct values of
φ [29].

In what follows, the energy spectrum is associated with the critical attractor of both the
logistic-like and the circular-like maps for specific values of φ. We associate each point of
the attractor with a dimensionless energy εi . Thus, these maps generate a multifractal energy
spectrum which can be used to investigate the thermal properties of systems with quasiperiodic
structures. Figure 1 depicts the integrated density of states (IDOS) as a function of energy
for the logistic map at the onset of chaos with φ = 2.0, considering a dimensionless energy
spectrum given by

εi = xi − min[xi ]

max[xi ] − min[xi ]
. (3)



3502 I N de Oliveira et al

10
-2

10
-1

10
0

Energy ε

10
-2

10
-1

10
0

ID
O

S

φ = 3.0

Figure 2. The same as in figure 1, but for the circular-like map defined by equation (2), considering
the exponent φ = 3.0.

The staircase aspect of IDOS reveals the discrete scale invariance of the spectrum. Also, we
can verify that IDOS has a fragmented structure at the bottom of the band which results from
the fact that the attractor is not dense with fractal dimension df < 1. In figure 2 we present the
integrated density of states for the circular map with φ = 3.0. In this case, the dimensionless
energy is given by εi = θi . We can notice again the scale invariance of the spectrum. However,
there are no gaps in the band because the attractor is dense with the fractal dimension df = 1.

The IDOS scaling at the bottom of the band determines the low-temperature properties of
systems with quasiperiodic structures. For both families of maps, we are particularly interested
in computing the specific heat using Bose–Einstein statistics with either conserved or non-
conserved number of particles. For the logistic-like maps, we generated N = 214 = 16 384
points in the attractor while for the circular-like maps the number of points in the attractor
corresponds to the Fibonacci number F20 = 17 711.

The presence of long range correlations in this and other systems avoids canonical
approaches like perturbation theory, where one first separates a small localized piece of the
system, treating the rest as perturbation a posteriori. This approach does not work in those
cases, because the behaviour of the macroscopic system is completely distinct of the behaviour
of its separated small piece, due to the long range correlations. Fortunately, the presence of
long range correlations itself gives the key to circumvent this difficulty: normally these systems
are very robust to wide modifications on a microscopic scale. In the study of continuous phase
transitions, for instance, the critical behaviour is known to depend only upon global properties,
namely the geometric dimension of the system and the symmetries of its order parameter,
being insensitive to the details of the microscopic interactions between atoms or molecules. A
striking example is the Ising model used to describe water: the molecules are simply replaced
by classical spins up diluted on a lattice, sites with spin down corresponding to the absence
of a molecule there [30, 31]. Also, the complicated interactions between these molecules are
replaced by a simple nearest-neighbour coupling constant. In spite of its simplicity, this model
reproduces quite well the behaviour of water near its critical temperature. The important
consequence of this robustness, i.e., many systems which are distinct within a microscopic
scale presenting the same critical behaviour, is that one can thus classify the various systems in
a few universality classes. Further, it is worthy of mention here that the finite sampling sizes
we will consider in the following study of the thermodynamics properties are large enough
to achieve the scaling behaviour of the multifractal spectrum. The reported results remained
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Figure 3. The normalized specific heat as a function of temperature for energy spectra generated
from critical points of logistic-like maps. We considered two distinct values of φ, namely φ = 1.1
(solid line) and 2.0 (dashed line). Notice the oscillatory behaviour around a power law decay at
low temperatures CV ∝ T αmin .

fairly much the same when we used longer samplings except by small corrections at very low
temperatures and at the vicinity of the Bose–Einstein condensation, at which we employ a
finite-size scaling analysis to characterize its nature.

3. Specific heat

Now we use the multifractal energy spectrum, as described in the last section, to determine
the specific heat. Many of the general statistical mechanics results we will refer to can be
found in [32]. First we compute the specific heat for a system with unconstrained particle
number. In this case, the chemical potential µ is null. As the energy spectrum is bounded,
the thermodynamics derived will resemble that of phonons which have a finite specific heat
at high temperatures. From Bose–Einstein statistics, the average occupation number for each
energy state is given by

〈ni 〉 = 1

[exp(βεi) − 1]
, (4)

where β = 1/kBT (in what follows we will use units of kB = 1). The average internal energy
can be computed from

U(N, T ) =
N∑

i=1

εi〈ni 〉. (5)

The specific heat is evaluated by differentiating the average internal energy U(N, T ) with
respect to the temperature T , i.e., Cv = dU(N, T )/dT |V , where V is the volume of the system,
which is kept constant by maintaining fixed the total number of one-particle accessible states
N . From equation (5), we compute the specific heat as

Cv = (1/2T )2

[
∑

i

ε2
i sinh−2(εi/2T )

]
. (6)

In figure 3, we plot the normalized specific heat as a function of temperature for two distinct
values of φ, namely φ = 1.1 (solid line) and 2.0 (dashed line), using the critical attractor points
of the logistic-like maps to generate the multifractal energy spectra. In both cases, we observe
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Figure 4. Log–log plot of the normalized specific heat as a function of temperature for the energy
spectra derived from circular-like maps, considering φ = 3.0 (solid line) and 4.5 (dashed line).
The specific heat presents a power-law decay at low temperatures as CV ∝ T αmax .

that the specific heat displays a non-linear vanishing of the form Cv/N ∝ T η, where the
exponent η is equal to the minimum singularity strength αmin. This exponent is the same as
displayed by the IDOS near the bottom of the band. Also, we can notice that the specific heat
presents log-periodic oscillations resulting from the hierarchical band gaps. The number of
particles vanishes as T → 0. On the other hand, as the temperature increases, particles are
generated which can occupy energy states at different scales, which explains the specific heat
oscillations. In the high temperature regime, the specific heat saturates at a CV /N = 1. The
saturation of CV /N is a general feature of systems with non-conserved particle number and
bounded energy spectrum.

The amplitude of the specific heat oscillations is directly related to the support fractal
dimension. For logistic-like maps, the attractor is not dense (df < 1) and the fractal dimension
increases with the map inflexion, thus resulting in smaller oscillation amplitudes for larger
non-linearities. On the other hand, for dense energy spectra (df = 1), we can anticipate
that the specific heat will not present log periodic oscillations. This can be corroborated by
computing the specific heat as a function of temperature using energy spectra generated from
the attractor of circular-like maps for different values of φ, namely φ = 3.0 (solid line) and 4.5
(dashed line), as shown in figure 4. For the circular-like maps, the support fractal dimension of
the dynamical attractor is exactly df = 1. In this case, the specific heat presents a power-law
decay in the region of low temperatures but does not present log-periodic oscillations. The
power-law exponent is equal to the maximum singularity spectrum once the most rarefied set of
the multifractal attractor governs the main scaling behaviour at the bottom of the energy band.

Next, we will consider systems in which the number of bosons is conserved, as in gases of
massive particles. In this case both low- and high-temperature behaviours are strongly affected
by the constraint in the particle number. At low temperatures the particles may condensate
at the ground state instead of just disappear as happens with collective excitations. At high
temperatures the internal energy saturates once new particles cannot be created and the specific
heat vanishes as T → ∞. Considering the grand canonical ensemble, the average number of
particles at the i th energy state is defined by

〈ni 〉 = 1

z−1 exp(βεi) − 1
. (7)

Here z = exp(βµ) is the fugacity, where µ is the chemical potential which can be extracted
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Figure 5. The fugacity as a function of temperature for energy spectra generated from the circular-
like map (solid line) and the logistic-like map (dashed line). The map inflexions are φ = 3.0 (solid
line) and φ = 1.1 (dashed line).

from

Np =
N∑

i=1

〈ni 〉, (8)

where Np is the number of conserved boson particles. In what follows, we will use Np = N/2.
In figure 5, we show the fugacity dependence on temperature for the energy spectra generated
from critical attractor points of logistic and circular maps. Again, we can notice a great
difference among the thermal properties of these systems. For the logistic map (dashed line
in figure 5), we can observe that the fugacity presents a monotonic decay as the temperature
increases. For the circular map (solid line in figure 5), the fugacity assumes values near unity at
low temperatures, presenting a monotonic decay afterwards. This indicates that a macroscopic
fraction of particles is in a single energy state εi = 0, i.e., this system displays a Bose–Einstein
condensation at low temperatures. The existence of a Bose–Einstein condensation depends
on the IDOS scale at the bottom of the band. For energy spectra derived from the generalized
logistic maps, the IDOS scales with ε

αmin
i . As αmin < 1, a Bose–Einstein condensation cannot

be reached. Using the circular-like maps to generate the energy spectra, the IDOS scales as
ε

αmax
i . As in this case αmax > 1, the IDOS increases faster than linearly and a Bose–Einstein

condensation takes place.
The number of particles at the ground state, namely N0, is related to the fugacity as

N0 = z/(1 − z). In figure 6, we plot the fraction of particles at the ground state N0/Np as a
function of temperature for two inflexion points of the circular map, namely φ = 3.0 (solid
line) and φ = 4.5 (dashed line), respectively. For low temperatures, the fraction N0/Np is
finite, vanishing at a finite temperature which depends on the inflexion point. We assume this
temperature to be the transition temperature Tc. The transition temperature becomes higher
for larger inflexion points, as it is shown in figure 7.

Using equation (5), with the help of equation (6) we can derive the specific heat as

4T 2Cv =
∑

i

ε2
i sinh−2(yi) −

[∑

i

εi sinh−2(yi)

]2/ ∑

i

sinh−2(yi), (9)

with yi = (εi − µ)/2T .
In figure 8, we show the specific heat as a function of temperature for conserved bosons and

a dense spectrum derived from generalized circular maps. We have considered φ = 3.0 (solid
line) and 4.5 (dashed line). We can notice that the specific heat has a discontinuity at T = Tc,
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Figure 6. Fraction of particles N0/Np in the ground state as a function of temperature considering
φ = 3.0 (solid line) and φ = 4.5 (dashed line). The condensed fraction vanishes at a transition
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Figure 7. The Bose–Einstein condensation transition temperature as a function of φ for energy
spectra derived from the generalized circular maps.

which is more evident as the exponent φ increases. For the finite number of energy states
used the discontinuity is rounded. We have computed the specific heat considering distinct
number of states N (distinct generations of the underlying multifractal spectra). They provide
similar figures with a crossing point at the transition temperature, confirming the specific heat
discontinuity in the limit of N → ∞. In this case, no evident low-temperature oscillations are
depicted. In figure 9, we show the corresponding result obtained by using the logistic attractor
considering φ = 1.1 (solid line) and 2.0 (dashed line). Similar to the case of non-conserved
particle number, the specific heat presents an oscillatory non-linear decay at low temperatures
but no Bose–Einstein condensation. At high temperatures the specific heat vanishes as T −2,
which is typical of systems with conserved particle number and bounded energy spectrum.

4. Conclusions

We have considered in this study a detailed analysis of the thermodynamic behaviour of systems
with non-interacting bosons exhibiting multifractal energy spectra derived from the critical
attractor of iterated maps, namely the logistic and circular-like maps. The main purpose of
using multifractal measures derived from dynamical systems was based on the fact that their
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Figure 9. Log–log plot of the normalized specific heat as a function of temperature and conserved
particle number for φ = 1.1 (solid line) and 2.0 (dashed line). The energy spectra were obtained
from critical attractor points of the logistic-like maps. No Bose–Einstein condensation is present.

scaling behaviour can be deeply understood and tuned by varying model parameters such as
the kind of non-linearity. Therefore, they represent an important tool to study in detail the
relationship between specific scaling features of the underlying multifractal spectrum and the
thermodynamic properties.

For systems with non-conserved particle number, the specific heat was shown to exhibit a
power-law behaviour at low temperatures. The vanishing of the specific heat is governed by the
scaling exponent characterizing the growth of the integrated density of states at the bottom of
the energy band. For instance, for the logistic-like maps this exponent is the singularity strength
of the most concentrated sets of the multifractal spectra αmin. On the other hand, the circular-
like maps have the most rarefied sets at the bottom of the band and the specific heat vanishing
exponent is the maximum singularity strength αmax. The power-law low-temperature behaviour
was observed to be modulated by log-periodic oscillations whenever the energy spectrum has
fractal dimension df < 1, as is the case of the logistic maps. At high temperatures, the specific
heat saturates at a constant value.
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On the other hand, for systems with conserved particle number the low-temperature
behaviour was shown to be similar. At high temperatures, the specific heat displays the
typical T −2 decay. Furthermore, as the chemical potential µ is non-null, a Bose–Einstein
condensation, which depends on the integrated density of states scale at the bottom of the
band, may take place. For the logistic maps the IDOS increases more slowly than linearly and,
therefore, there is no Bose–Einstein condensation. However, the large values of αmax > 1 for
the circular maps provide the necessary condition for this transition to occur. The specific heat
is discontinuous at the Bose–Einstein condensation transition, whose temperature increases
monotonically with the map non-linearity. The above trends are quite general for non-
interacting bosons and will be taken into account when analysing the thermodynamic behaviour
associated with bosonic systems with scale invariant energy spectra.
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